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In 1982, Wynberg reported an extraordinary example of asym-
metric Lewis base catalysis in the context of cinchona alkaloid-
catalyzed ketenechloral cycloadditions (Figure T)Wynberg's
pioneering investigations undoubtedly provided inspiration to recent
reports of asymmetric alkaloid-catalyzed keteimaine cycload-
ditions2 ketene dimerizationsand intramolecular keterealdehyde
cycloadditions The success of these latter investigations, however,
serves to emphasize the absence of a ketaluehyde cycloaddition
based on the Wynberg model addressing the original transforma-
tion’s severe substrate limitations. Successfully extending the
Wynberg ketenealdehyde cycloadditions to structurally diverse
aldehydes would afford access to versatile enantioenrighed-
tones using a commercially available catafysterein, we report
asymmetric cinchona alkaloidl (or 2)-catalyzed acid chloride
aldehyde cyclocondensation (AAC) reactions applicable to a range

of structurally diverse aldehydes. These reactions are characterized

by exceptionally high enantio- and diastereoselection and the
operational simplicity derived from using commercially available
reaction catalysts and in situ ketene generation.

Alkaloid additives catalyze keten@ldehyde additions through
nucleophilic addition to ketene, generating the acylammonium
enolate3 responsible for mediating-©C bond construction (Figure
2).% The specificity of Wynberg's original cycloaddition for highly
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Figure 1. Alkaloid-Catalyzed KeteneAldehyde Cycloadditions.

o _ M
Il 0 Lewis acid ~0
—_— " 1 - + 1
JL “ RZN/K/R (M) R’;N)\/R
R H 3 4
NR + M NR’ = alkaloid ‘ R®CHO

1 1
0 T R R
o Qom0 ge O=n-[-Q re
— — = %(
R! R2 Sy M -+
RaN H ReN° 5 H
Figure 2. Postulated Mechanism for Alkaloid-Catalyzed AAC Reactions.

dehyde test reaction afforded the first indication of this reaction

electrophilic aldehydes (e.g., chloral) suggested that these enolategjesign’s validity, delivering the desirggtlactone6 in 62% ee.

possess relatively limited nucleophilicity. In considering strategies
for generalizing the alkaloid-catalyzed ketersdehyde additions,
Lewis acid activation of the aldehyde electrophile emerged as an
alternative for eliciting the requisite nucleophilicity from the
ammonium enolatesFurthermore, alkaloid-mediated enolate for-
mation in the presence of metallic Lewis acid cocatalysts (M) was
considered a plausible conduit to metal-stabilized ammonium
enolates4. Such enolates could be expected to mediate aldehyde
addition through a metal-templated, closed transition stte
providing both enthalpic and entropic activation to the ensuing
enolate-aldehyde addition.

i
Preliminary reaction development emphasized the identification

of cinchona alkaloid-Lewis acid combinations that would allow in
situ ketene generation to be integrated with the catalyzed ketene
aldehyde cycloadditions. Our prior success in merging tertiary
amine-mediated dehydrohalogenation of acyl halides with asym-
metric ketene-aldehyde cycloadditions led us to explore tRe-
NEt-acid chloride combination as the ketene soif®uinine was
employed initially as the requisite Lewis base catalyst (5 mol %)

o] (o} 5 mol % quinine o
J\/\ + )J\ i @
H Ph Cl Me 15 mol % LIC|O4 'CH,CH-Ph
. o 6 22!
1haddition 'Pr2NEt, —25°C 62% ee

Success in this preliminary reaction provided a platform for
evaluating the impact of Lewis base (alkaloid) structure, solvent
composition, and catalyst stoichiometry on the alkaloid/Li&I10
catalyzed AAC reactions. Lewis base catalyst candidates were
drawn from easily accessed cinchona alkaloid derivatives differing
n Co oxygen substitution. Systematically investigating AAC
efficiency as a function of the quinidir@-protecting group revealed
that theO-trimethylsilyl derivative 2, TMSQ) afforded optimum
reaction yields while enantioselection was relatively insensitive to
oxygen substitutioAl12 Catalytic competency of the pseudoenan-
tiomeric Lewis base catalysD-trimethylsilyl quinine (TMS))
paralleled closely that of TMS and, thus, provided convenient
access to the enantiomeificlactone series. Solvent systems for
the TMSQ/LICIO-catalyzed AAC reactions composed predomi-

for evaluating various Lewis acid cocatalysts (15 mol %) in the nately of methylene chloride but containing sufficient diethyl ether
reaction of acetyl chloridé?r,NEt (ketene) with hydrocinnamal-  to ensure solubility of the LiClQat low temperatures delivered
dehyde as a representative unactivated aldehyde (eq 1). Amongoptimum reaction yields and stereoselection. Lewis acid stoichi-
the various Lewis acids examined, lithium perchlorate emerged asometry emerged as a crucial variable that could be conveniently
a uniquely effective cocatalyst for mediating the desired AAC modulated to maximize reaction efficiency depending on aldehyde
reaction'® The catalyst system composed of 5 mol % quinine and structure. Thus, slow addition of acid chloride (2 equiv ovédr-4

15 mol % LiCIQy in the standard acetyl chloride-hydrocinnamal- h) to a CHCI/Et,O (2:1) solution containing TMQ (10 mol %)/
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Table 1. Cinchona Alkaloid/LiClO4-Catalyzed AAC Reactions afforded similarly high absolute and relative stereocontrol under
0, o  TMsq o) o TtMsQ () 0 o ana!ogous conditions and, Whgn necessary, using increased amounts
Cl/U\/R1 + HJ\RZ LI of LiClO, for aldehydes affording sluggish reaction rates (e.g., the
1ent_7 R? R' = H or Me RT 7 R sterically hindered aldehyde pivaldehyde requires 3 equiv LiCIO
‘ o ' o entry b). As observed in the ketene cyclocondensations, the
TMSQ = O-trimethylsilylquinidine; TMSq = O-trimethylsilylquinine a-branched aldehyde cyclohexanecarboxaldehyde delivers the cis-
entry product Rl R? %eer  %det  %yield disubstitutegb-lactone?i in good yield and with very high enantio-
a 7a a CoHyy 94 _ 85 and_dlast_ereose_lectlon (entry i; 97%_9(96% d_e). Modulating
b 7b H CMe; o6 - 71 Lewis acid loading also succeeded in rendering aryl aldehydes
c 7c H CH,CH,Ph 92 - 80 (entries jm), including ortho-substituted derivatives, as useful
d ent7d H CH,0Bn 84 - 70 AAC substrates, delivering theis-4-aryl-3-methyl-2-oxetanones
e ent7e  Me  CHCHPh 799 9% 84 in >99% ee £96% de, 76-85% vield).
f ent-7f Me  (CH,)sCHCH, 99 90 74 _ . e . )
g ent7g Me CHOBn 99 76 68 Cinchona alkaloid-Lewis acid-catalyzed AAC reactions dramati-
h ent-7h  Me  CHCH(CH), 99 90 72 cally expand the scope of Wynberg's original ketea&lehyde
i no Me  “CeHn o7 >96 74 cycloadditions. These reactions are mechanistically distinct and,
| ent-7j  Me  CeHs 99 % 78 in several important aspects, directly complement the asymmetric
k ent-7k  Me  PCgH4F >99  >06 85 Lewi id-catalvzed i ants. | ficular. th S
| 2l Me  °CeH.Cl ~99 26 80 ewis acid-catalyzed reaction variants. In particular, the ™
m ent-7m  Me  °CgH4CHs >99 >06 76 LiClO4 catalyst system relieves the limitatiorbranched aldehydes
previously imposed on AAC reactions and engages methylketene
@ Enantiomer ratios determined by chiral GLC or HPLCMinor in exceptionally stereoselective cyclocondensations. These reaction

enantiomer not observed for value89%. ¢ Diastereomer ratios determined - - . -
by IH NMR of crude product mixtures: 90% ee using TM§as catalyst. attributes combined with the ready availability of the necessary

¢ 9506 ee using TM§ as catalyst! 96% ee using TM as catalyst. reaction components promise to further expand the scope and utility
of the AAC reaction technology.

LiClO,4 (30—300 mol %) andPrNEt (2.5 equiv) provided the

optimized conditions for AAC reactions employing a range of

structurally diverse aldehydes (eq®2).
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